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Abstract— Missing data poses significant challenges to 

the reliability of statistical analyses and predictive 

modeling across diverse research fields. This paper 

provides an in-depth review of both traditional and 

machine learning imputation techniques, enabling 

researchers to navigate the complexities of missing data 

with greater efficacy. We evaluate simple imputation 

methods, such as mean, median, and mode, and delve 

into more sophisticated strategies including regression-

based, hot and cold deck, and probabilistic models like 

Gaussian Mixture Models and K-Nearest Neighbors. 

Furthermore, the paper explores cutting-edge machine 

learning approaches like Random Forest, Multiple 

Imputation by Chained Equations, and deep learning 

models such as autoencoders and Generative 

Adversarial Networks. Our comprehensive analysis 

highlights the effectiveness of each method, tailored to 

various missing data mechanisms MCAR, MAR, and 

NMAR providing actionable insights for researchers to 

enhance data integrity and improve the outcomes of 

their studies. 
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I. INTRODUCTION 

The ubiquity of missing data in research datasets presents a 

persistent challenge that compromises the integrity of 

statistical analyses and predictive modeling. Missing data 

can arise from various sources such as non-response in 

surveys, errors in data collection, or unforeseen disruptions 

in data transmission Alam et al. (2023). The nature of 

missingness, whether random or systematic, can 

significantly influence the bias and variance of the estimates 

derived from such datasets. Thus, managing missing data 

through appropriate imputation methods is crucial to ensure 

the validity of research findings Newman (2014). 

In this paper, we embark on a comprehensive survey of 

imputation methods tailored to address the complexities 

introduced by missing data in diverse datasets. Our 

exploration encompasses a range of traditional and 

advanced techniques, each suited to different types of 

missing data mechanisms—Missing Completely at Random 

(MCAR), Missing at Random (MAR), and Not Missing at 

Random (NMAR). We commence our discussion by 

delineating the conceptual framework that underpins 

missing data theory, highlighting the implications of each 

missing data mechanism on the validity of statistical 

inferences. Subsequently, we delve into simple imputation 

methods like mean, median, and mode imputation, which, 

despite their simplicity, are often limited by their 

assumption of randomness in missing data patterns. 

To address the limitations of simple methods, we explore 

sophisticated techniques such as hot deck and cold deck 

imputation, regression imputation, and probabilistic models 

like Gaussian Mixture Models and KNN imputation. These 

methods offer nuanced approaches that account for the 

underlying relationships within the data, enhancing the 

accuracy of imputations under certain conditions. Moreover, 

we investigate the role of machine learning in imputation, 

with a focus on Random Forest and MICE. These methods 

utilize the inherent data patterns and correlations to generate 

more reliable and robust imputations, particularly when 

dealing with MAR data. 

Our survey also extends to cutting-edge techniques such as 

imputation using deep learning models like Autoencoders 

and Generative Adversarial Networks, which represent the 

frontier of imputation methodology. These models are 

particularly adept at handling complex and high-

dimensional data, offering innovative solutions that 

traditional methods may not provide. Through this detailed 

examination, our paper aims to equip researchers with the 

knowledge to select and apply the most appropriate 

imputation techniques, thereby enhancing the reliability of 

their analyses in the face of incomplete data. 

This paper is structured as follows: In Section 2, we provide 

a conceptual framework of missing data mechanisms, 

elaborating on MCAR, MAR, and NMAR. Section 3 

reviews traditional imputation methods, including mean, 

median, and mode imputation. Section 4 explores more 

imputation techniques such as hot deck, cold deck, and 

regression imputation, as well as probabilistic models like 
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GMM and KNN. Section 5 delves into machine learning-

based imputation methods, focusing on Random Forest and 

MICE. Section 6 discusses cutting-edge imputation 

techniques involving deep learning models such as 

autoencoders and GANs. Finally, Section 7 concludes with 

a discussion on future research directions and the 

implications of our findings for the field of data imputation. 

 

1.1 Rationale and Audience 

In the era of data-driven decision-making, the integrity of 

data underpins the reliability of research outcomes across 

various disciplines; missing data is a pervasive challenge 

that compromises the accuracy of statistical analyses and 

decision-making processes, highlighting a critical need for 

robust imputation methods Pansara (2023). This study 

systematically evaluates both established and innovative 

machine learning-based imputation techniques to address 

the gaps in traditional methods that often fail to 

accommodate the nuances of modern datasets. Our research 

aims to enhance the reliability of research findings in data-

rich environments, bridging the gap between theoretical 

models and practical applications. This comprehensive 

survey targets a diverse array of professionals grappling 

with incomplete data, including academic researchers, data 

scientists, and statisticians across fields such as biology, 

economics, and computer science. Additionally, industry 

practitioners who rely on accurate data for informed 

decision-making will find this analysis invaluable. By 

detailing the practical applications and limitations of each 

imputation technique, this paper serves as an essential 

resource for anyone tasked with ensuring data integrity and 

making informed decisions based on analysis 

 

1.2. Search Methodology 

We conducted a systematic search for imputation methods 

using Google Scholar focusing on terms like "mean 

imputation," "median imputation," "K-Nearest Neighbors 

imputation," and "autoencoder imputation." Boolean 

operators (AND, OR) refined the queries to target studies 

published in the last 15 years, peer-reviewed, and written in 

English. Papers not focused on imputation, older than 15 

years unless seminal, non-peer-reviewed, or in other 

languages were excluded. After an initial screening of titles 

and abstracts, we reviewed full texts of relevant articles and 

checked their references for additional studies. 

 

1.3 Family of Missing Values 

Missing data is categorized into three primary mechanisms: 

● Missing Completely at Random (MCAR): MCAR 

occurs when the missingness of data is independent of 

both observed and unobserved variables Rubin (1976). 

In this scenario, the absence of data does not introduce 

systematic bias into the analysis, allowing standard 

statistical methods to be applied without special 

adjustments for handling missingness. An example of 

MCAR is when laboratory samples are randomly lost 

due to logistical errors, meaning the missing data is  

unrelated to any patient characteristics or health 

conditions. However, while MCAR does not bias the 

results, extensive missing data under this mechanism 

can still reduce statistical power and diminish the 

effective sample size, potentially limiting the 

robustness and generalizability of the study’s 

conclusions. 

● Missing at Random (MAR): MAR describes a situation 

where the probability of missingness is systematically 

related to the observed data but is independent of the 

missing values themselves, conditional on the observed 

data Rubin (1976). This allows for the use of advanced 

imputation  methods that leverage relationships 

between fully observed variables to estimate the 

missing data. A common example of MAR would be 

younger patients being less likely to complete certain 

clinical  tests. In such cases, methods like Multiple 

Imputation by Chained Equations (MICE) can use the 

correlations among observed predictors to handle the 

missing data, thereby reducing bias and improving the 

accuracy of the analysis. 

● Not Missing at Random (NMAR): NMAR occurs when 

the missingness is related to the unobserved data values 

themselves Rubin (1976). In this challenging scenario, 

the missing data mechanism depends on information 

that is not available, requiring assumptions about the 

relationship between the likelihood of missingness and 

the missing data itself. For instance, in clinical studies, 

patients with more severe symptoms may be less likely 

to report all their symptoms, leading to non-random 

missingness of critical health information. Effectively 

handling NMAR is crucial to avoid biased conclusions, 

especially in clinical trials and observational studies 

where the accuracy of conclusions can directly 

influence clinical decisions and policy-making 

 

II. SURVEY OF MISSING VALUE METHODS 

2.1 Traditional Methods 

2.1.1 Simple Imputation Methods 

This includes mean, median, and mode imputation, popular 

for their simplicity and computational efficiency Jadhav et 

al. (2019). These methods replace missing values with 

central tendency measures of observed data. They are 

effective under the MCAR assumption, however, when 

applied to MAR or NMAR data, they can introduce bias and 

distort data distribution, leading to inaccurate estimates and 

overly confident inferences Buczak et al. (2023). This 

distortion can significantly impact analyses like regression 

models or predictive algorithms, where maintaining the 

original data distribution is crucial. Despite these limitations 

this methods can be useful for preliminary analyses if their 

assumptions are carefully evaluated. 
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2.1.2 Hot deck and cold deck imputation 

Hot deck and cold deck imputation are practical techniques 

for handling missing data using observed values, though 

they differ in source utilization. Hot deck imputation selects 

values from similar records within the same dataset, defined 

by key characteristics such as age or education, making it 

effective when clear patterns exist in the data. However, 

inaccuracies arise if donors are poorly matched, and this 

method underestimates standard errors, leading to biased 

inferences. It works well for both continuous and categorical 

data but struggles with complex data structures. Cold deck 

imputation, by contrast, uses external historical datasets to 

fill missing values. This method is effective when external 

data remains valid and reflective of current conditions, such 

as using prior years’ test scores in longitudinal studies. 

However, it risks inaccuracies if the historical data doesn’t 

align with contemporary situations. Both methods assume 

data is MCAR or MAR, maintaining original distributions 

and relationships, but they perform poorly under NMAR 

conditions, leading to bias. 

 

2.1.3 Forward and Backward Fill Imputation 

Forward and backward fill imputations (FF & BF) are 

simple propagation techniques for handling missing data in 

time-series datasets by filling gaps with the nearest observed 

value. Forward fill replaces missing values with the most 

recent preceding value, while backward fill uses the next 

available value Ahn et al. (2022). These methods assume a 

MCAR or MAR pattern and maintain temporal continuity, 

making them effective for datasets with gradual trends Van 

Ginkel et al. (2020). However, they can introduce biases in 

rapidly changing or non-sequential data, especially when 

MNAR is present Molenberghs et al. (2014). Additionally, 

FF and BF can propagate errors from earlier data points, 

inflate variance by repeating values, and struggle with long 

sequences of missing data Kenward and Molenberghs 

(2009). Though useful for time-series data with gradual 

changes, they may not be suitable for more complex 

datasets, in which case methods like mean/median, hot deck, 

or model-based imputation are preferred Esling and Agon 

(2012). 

 

2.2 Machine Learning Methods 

2.2.1 Gaussian Mixture Models Imputation 

GMMs are used for imputing missing values by modeling 

data as a mixture of several Gaussian distributions, each 

characterized by its own mean and covariance Asheri et al. 

(2021). At the core of this method is the Expectation-

Maximization (EM) algorithm, an iterative procedure 

designed to find maximum likelihood estimates in datasets 

with incomplete data. The EM algorithm addresses missing 

data by alternating between two key steps. In the 

Expectation Step (E-step), the algorithm estimates the 

missing data using the observed data and the current 

parameter estimates. For each incomplete data point, the E-

step computes the expected value of the missing component 

based on the current model parameters. By leveraging the 

observed data, the E-step statistically infers the missing 

values, enhancing the imputation process Enders (2022). 

GMMs assume that both the observed and missing data are 

generated from a mixture of underlying Gaussian 

distributions. This assumption greatly impacts the success of 

the imputation, especially in datasets with multimodal 

distributions. An essential consideration is the choice of the 

number of Gaussian components, k. If too few components 

are selected, the model may oversimplify the data, failing to 

capture its complexity. On the other hand, too many 

components can lead to overfitting, particularly in datasets 

with limited data. Techniques such as the Bayesian 

Information Criterion (BIC) or Akaike Information 

Criterion (AIC) are frequently used to determine the optimal 

number of components Steele and Raftery (2010). The 

computational complexity of the EM algorithm in GMMs 

depends on both the number of components and the 

dimensionality of the data. Each iteration of the algorithm 

has a time complexity of O(nkd + nk + kd2), where n is the 

number of data points, d is the number of features, and k is 

the number of components Asheri et al. (2021). The 

memory complexity includes storing the dataset (O(nd)) and 

the model parameters (O(kd + kd2)), resulting in a total 

memory requirement of O(nd + kd + kd2). 

GMMs are particularly effective for datasets with complex, 

multimodal distributions, as they can model multiple 

distinct subpopulations, each following a Gaussian 

distribution. This makes GMMs well-suited for 

heterogeneous data that contains different clusters with 

varying means and covariances. GMMs are also effective in 

handling high-dimensional datasets where traditional 

imputation methods may fail to capture intricate 

relationships between variables. Their ability to manage 

MAR or MCAR data using observed data patterns further 

underscores their suitability for imputing missing values in 

complex, high-dimensional, and heterogeneous datasets Cho 

et al. (2020). 

GMM imputation ensures computational efficiency and 

accuracy through several stopping criteria, including a 

maximum number of iterations, monitoring log-likelihood 

changes, and checking for minimal changes in model 

parameters (e.g., means and covariances) Steele and Raftery 

(2010). These criteria balance computational resources and 

imputation quality, allowing the process to terminate 

efficiently while maintaining accuracy. By modeling data 

probabilistically, GMMs offer robust and reliable 

imputations, making them well-suited for managing missing 

data in complex datasets. Although computationally 

intensive and not always guaranteed to converge to a global 

optimum, the EM algorithm’s precision makes GMMs a 

valuable tool in diverse applications. After the E-step, the 

Maximization Step (M-step) updates the means, 

covariances, and mixture weights to maximize the 
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likelihood of the observed and estimated missing data. 

These steps are repeated until convergence, typically 

determined by minimal changes in log-likelihood or 

parameter stabilization. In case of a two-dimensional image, 

after a DWT transform, the image is divided into four 

corners, upper left corner of the original image, lower left 

corner of the vertical details, upper right corner of the 

horizontal details, lower right corner of the component of 

the original image detail (high frequency). You can then 

continue to the low frequency components of the same 

upper left corner of the 2nd, 3rd inferior wavelet transform. 

 

2.2.2 K-Nearest Neighbors (kNN) 

KNN imputation substitutes missing values by leveraging 

the K most similar instances in the dataset Triguero et al. 

(2019). This method calculates similarity using a distance 

metric, such as Euclidean or Manhattan distance, and then 

imputes missing values based on the mean, median, or mode 

of the neighboring values Santos et al. (2020). The success 

of KNN imputation heavily depends on the proper selection 

of the distance metric and the number of neighbors (K), 

which must strike a balance between capturing local data 

patterns and avoiding the introduction of noise or over-

smoothing. For example, Euclidean distance is often ideal 

for continuous data, while Manhattan distance may better 

accommodate categorical data. Moreover, the choice of K 

significantly impacts how well local patterns are 

preserved—smaller values of K may be more sensitive to 

noise Zhang (2012). KNN imputation excels at preserving 

local structures and is especially useful in datasets where 

similar instances are predictive of similar outcomes Cho et 

al. (2020). It assumes that the missing data mechanism is 

either MAR (Missing at Random) or MCAR (Missing 

Completely at Random), allowing for accurate inferences 

based on observed patterns in the data. However, KNN 

imputation requires substantial computational resources due 

to the need for calculating distances and retrieving 

neighbors. The computational complexity is given by O(m 

·(nd + n log n + k)), where n represents the number of 

samples, d is the number of features, and m is the number of 

missing values Beretta and Santaniello (2016). This, 

combined with the memory requirement O(nd + n), makes 

KNN a resource-intensive approach. 

Stopping criteria in KNN imputation are often based on 

performance evaluations, with the process typically 

concluding once the predefined number of neighbors (K) 

has been reached. Performance metrics such as mean 

squared error or accuracy are also commonly used to 

determine when further improvement has plateaued. In 

practice, computational resources and time constraints often 

dictate the stopping point for the imputation process. 

Despite its computational demands, optimizations like KD-

trees have been introduced to mitigate the burden of 

processing Muja and Lowe (2014). Nonetheless, KNN 

imputation’s effectiveness depends on careful selection of 

the distance metric and K; poor choices can result in biased 

or inaccurate imputations, particularly in large datasets or 

those prone to outliers. Despite these challenges, KNN 

remains a flexible and reliable imputation method when 

properly tuned to the characteristics of the dataset and the 

available computational resources 

 

2.2.3 Random Forest (RF) imputation 

RF imputation leverages the power of ensemble learning 

through multiple decision trees to effectively handle missing 

data Tang and Ishwaran (2017). In this method, a large 

number of trees are constructed using different subsets of 

the available data, and the imputed value for each missing 

entry is determined based on the consensus prediction 

across all trees. This collective approach enhances the 

robustness and reliability of the imputations, especially in 

the presence of complex, nonlinear relationships and 

interactions between continuous and categorical variables 

Plaia et al. (2022). RF imputation is particularly useful in 

cases where the missing data mechanism is MAR or 

MCAR, as it can accommodate various data types and 

complex structures. 

One key feature of RF imputation is that it typically does 

not rely on formal convergence criteria. Instead, the 

imputation process is terminated after a predetermined 

number of iterations, guided by performance metrics like 

mean squared error or by computational limits. While 

iterative imputation can lead to improved results, the 

optimal number of iterations often depends on the specific 

dataset and requires empirical validation. It is important to 

note that RF imputation assumes the missing data is MAR, 

which can introduce bias if the data is MNAR. Additionally, 

this method is computationally intensive, particularly for 

large datasets with significant amounts of missing data 

Kokla et al. (2019). The accuracy of imputations heavily 

relies on the RF model’s ability to correctly identify 

important features, and any errors in feature selection can 

compromise the quality of the imputed values. Moreover, 

when too many trees are used relative to the size of the 

dataset, RF models may overfit, leading to overly complex 

models that generalize poorly Shah et al. (2014). Unlike 

multiple imputation methods, RF typically generates a 

single imputed dataset, potentially underestimating the 

uncertainty in the imputed values. The computational 

demands of RF imputation are substantial, with the 

complexity of training a random forest involving n samples, 

d features, and t trees amounting to O(t ·n log n ·d). This 

complexity arises primarily from sorting operations during 

bootstrap sampling. Furthermore, each missing value must 

be passed through all t trees, resulting in an imputation 

complexity of O(t ·d) per missing value. For a dataset with 

m missing values, the overall complexity becomes O(t ·n 

log n ·d + m ·t ·d). Memory-wise, RF imputation is also 

demanding, requiring storage for both the dataset (O(nd)) 
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and the decision trees (O(t ·n log n)) Rahman and Islam 

(2013). 

 

2.2.4 Multivariate Imputation by Chained Equations 

Multivariate Imputation by Chained Equations (MICE) 

employs an iterative regression technique to address missing 

data, creating multiple imputations Van Buuren and 

Oudshoorn (2000). The process models each variable with 

missing entries as a dependent function of other variables 

within the dataset. Predictions from these regression models 

are then used to impute missing values. This iterative cycle 

is repeated, with each round refining the imputations based 

on updated model estimations, until convergence is 

achieved Azur et al. (2011). MICE generates multiple 

complete datasets, capturing the inherent uncertainty of the 

missing data, which enables robust statistical inference. 

Each dataset is independently analyzed, and the results are 

aggregated to yield comprehensive statistical estimation 

Van Buuren and Groothuis-Oudshoorn (2011). This method 

operates under the assumption that the data is MAR or 

MCAR, proving particularly effective in preserving the 

statistical characteristics of the original dataset, such as 

variability and inter-variable correlations. 

Despite these benefits, MICE has several limitations. If the 

data is MNAR, MICE may produce biased imputations. The 

computational demands are considerable, largely due to its 

iterative and multivariate nature. The complexity for 

imputing data across M complete datasets through i 

iterations for d features with n samples calculates to 

O(M·i·d·nd2), reflecting the repeated fitting of regression 

models and their application in imputation across all 

datasets. Additionally, the memory requirements include 

storing these M imputed datasets, accumulating to O(M·nd) 

Beesley and Taylor (2021). Convergence in MICE refers to 

the stabilization point in the imputation process where 

subsequent iterations no longer significantly alter the 

imputed values. Common criteria for assessing convergence 

include: (1) Maximum Iterations: A set number of 

imputation cycles are performed, prioritizing computational 

efficiency over precision; (2) Change in Imputed Values: 

Monitoring the absolute difference between imputed values 

across iterations, assuming convergence when this 

difference falls below a specified threshold, balancing 

efficiency and accuracy; and (3) Convergence Diagnostics: 

Utilizing sophisticated statistical measures like log-

likelihood or hypothesis tests, though these methods are 

computationally intensive and often impractical for routine 

use. It’s important to  note that convergence alone doesn’t 

guarantee the quality of the imputed data, as factors such as 

the suitability of imputation models and the complexity of 

missing data patterns also play crucial roles. Therefore, 

combining multiple convergence criteria is recommended to 

enhance both efficiency and accuracy. 

The accuracy of the imputation model depends on the 

correct specification of the relationships between variables, 

and incorrect model specification can lead to biased 

imputations. The choice of imputation method within MICE 

can significantly influence the results, and the method is 

sensitive to the quality of observed data; errors or outliers in 

the observed data will propagate into the imputed values 

Aleryani et al. (2020). Despite its resource-intensive nature, 

MICE stands out as a highly flexible and robust method, 

offering comprehensive solutions for missing data treatment 

in complex datasets, ultimately leading to more accurate and 

reliable statistical conclusions. Therefore, it is crucial to 

carefully assess the suitability of MICE for a given dataset 

and consider alternative methods if necessary. 

 

2.3 Deep Learning Methods 

2.3.1 Autoencoders 

Autoencoder imputation utilizes the unique capabilities of 

autoencoders—a type of neural network optimized for 

learning efficient data representations—to address missing 

values Pinaya et al. (2020). An autoencoder comprises two 

primary components: an encoder which compresses input 

data into a lower-dimensional latent space, and a decoder, 

which reconstructs the data from this compressed form. This 

system is trained on incomplete datasets to discern 

underlying patterns and structures, making it highly 

effective for complex, high-dimensional datasets where 

traditional imputation methods falter Pereira et al. (2020). 

By reconstructing input data from the latent space, 

autoencoders can predict and fill in missing values, 

assuming the data is MCAR or MAR Ma et al. (2020). 

Autoencoders are adept at capturing complex, nonlinear 

relationships and interactions between variables, preserving 

the integrity of the original data. Their ability to learn a 

compressed representation in the latent space not only aids 

in imputation but also proves beneficial for tasks like 

visualization and anomaly detection. However, ensuring that 

this latent space retains essential information for accurate 

reconstruction requires careful management. The flexibility 

of autoencoders to adapt to various data types through 

appropriate network architectures and activation functions 

also demands meticulous selection of autoencoder variants 

to suit specific data characteristics. 

Despite their strengths, autoencoders face several 

challenges.  They are prone to reconstructing observed 

values while potentially overlooking the underlying 

distribution of missing values, leading to reconstruction 

bias. Their effectiveness heavily depends on the chosen 

architecture and hyperparameters, which can make the 

optimization process both time-consuming and resource-

intensive. Autoencoders typically assume MAR data, and 

addressing MNAR data remains problematic Costa et al. 

(2018). The training of deep autoencoder models is 

computationally demanding, especially for large datasets, 

and can lead to underfitting—where the model fails to 

capture complex data patterns—or overfitting, where the 

model memorizes training data at the expense of general 
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performance. Moreover, autoencoders usually generate a 

single imputed value for each missing entry, disregarding 

the inherent uncertainty of the imputation process. Despite 

these limitations, autoencoder imputation remains a robust 

and flexible technique, offering realistic and accurate 

imputations that closely reflect the true characteristics of the 

dataset. This makes autoencoders an invaluable tool in the 

repertoire of methods for managing missing data in complex 

scenarios. 

 

2.3.2 Generative Adversarial Networks (GANS) 

Generative Adversarial Networks (GANs) imputation is a 

deep learning method for handling missing data that 

leverages the generative capabilities of GANs. A GAN 

consists of two neural networks: a generator and a 

discriminator. The generator creates synthetic data that 

mimics the real data, while the discriminator evaluates the 

authenticity of the data, distinguishing between real and 

generated samples. During imputation, the generator is 

trained to produce plausible values for the missing data by 

learning the underlying distribution of the observed data. 

The discriminator, on the other hand, assesses the quality of 

the generated imputations, guiding the generator to improve 

its outputs. This adversarial process continues until the 

generator produces realistic imputations that the 

discriminator cannot easily distinguish from the real data. 

GANs imputation assumes that the data is MAR or MCAR, 

making it suitable for various types of data, including high-

dimensional and complex datasets. However, while GANs 

have shown promise, they come with several challenges. 

They are notoriously difficult to train, often suffering from 

instability issues such as mode collapse or vanishing 

gradients, which can significantly impact the quality of 

imputed values. They typically require large amounts of 

complete data to effectively learn the underlying data 

distribution, posing a challenge for datasets with high 

missingness rates. Mode collapse can result in a lack of 

diversity in the imputed values, and achieving optimal 

performance often requires careful tuning of numerous 

hyperparameters, which is time-consuming and 

computationally expensive. Evaluating the performance of 

GANs for imputation is difficult due to the absence of 

ground truth for the missing values. Additionally, handling 

MNAR data remains a challenge for GANs. The 

computational cost of training GANs, especially for large 

datasets, further limits their applicability in some cases. 

Despite these challenges, GANs imputation remains a 

powerful and flexible approach that offers a sophisticated 

solution for missing data, ensuring that the imputed values 

are both accurate and realistic. 

 

III. CHALLENGES 

3.1 Handling Complex Data Structures 

3.1.1 Heterogeneous Data 

Real-world datasets often exhibit considerable 

heterogeneity, encompassing a mix of numerical, 

categorical, ordinal, and textual data. Imputing missing 

values in such diverse datasets presents unique challenges, 

as traditional imputation methods are typically optimized for 

single data types and may fall short when confronted with 

multiple data forms. If handled inadequately, imputation in 

heterogeneous datasets can lead to inconsistencies, 

introduce bias, or even distort the relationships among 

variables, ultimately compromising the quality and validity 

of subsequent analyses or predictive models.Numerical 

Data: For numerical data, common imputation methods such 

as mean, median, or k-nearest neighbors (KNN) imputation 

are often used. These methods exploit mathematical 

relationships between values, making them suitable for 

filling in missing continuous variables. However, these 

methods can break down when applied to non-numerical 

data types, underscoring the need for type-specific 

approaches. 

Categorical Data: Categorical data, which consists of 

discrete categories without inherent order, requires a 

different approach. Techniques like mode imputation or hot 

deck imputation are more appropriate, as they preserve the 

categorical nature of the data. Mode imputation replaces 

missing values with the most frequent category, while hot 

deck imputation selects replacement values from similar 

records within the dataset. Both methods maintain the 

categorical structure but can be limited if the data has rare or 

underrepresented categories. Ordinal Data: Ordinal data, 

which carries a natural order but unequal intervals between 

values (such as rankings), requires an approach that respects 

this order. Simply applying categorical or numerical 

imputation methods risks distorting the rank relationships. 

Methods like ordinal regression or stratified imputation are 

better suited, as they maintain the ranking structure and 

avoid creating inconsistencies between the ordinal variables. 

Text Data: Imputing missing text data introduces further 

complexity, as text data cannot be treated like numerical or 

categorical variables. Missing text often requires more 

advanced imputation methods grounded in natural language 

processing (NLP). Techniques such as word embeddings 

(e.g., Word2Vec, GloVe), transformer-based models (e.g., 

BERT, GPT-3), or topic modeling are utilized to infer 

missing text based on the context within surrounding words, 

sentences, or even documents. These methods allow for 

more accurate imputation by capturing the semantic 

meaning and contextual relationships within the text. 

Handling Heterogeneity: A common approach to managing 

heterogeneous datasets is to apply different imputation 

methods tailored to each data type. For example, regression-

based or KNN imputation might be used for numerical data, 

hot deck or mode imputation for categorical variables, 

ordinal regression for ordinal data, and NLP techniques for 

text. However, when imputation methods are applied 

independently to each data type, careful consideration is 
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necessary to avoid introducing artificial correlations or 

inconsistencies between the imputed values. For instance, 

failing to account for relationships between numerical and 

categorical data may result in incongruous imputed values 

that do not align with the rest of the dataset. 

Advanced Methods: Advanced imputation techniques such 

as Multiple Imputation by Chained Equations (MICE) offer 

a solution for handling heterogeneous data by modeling 

each variable conditional on the others. MICE iteratively 

imputes missing values for each variable using the observed 

data from other variables, thus preserving the relationships 

across mixed data types. Another approach is Random 

Forest imputation, which naturally handles heterogeneous 

data types by constructing decision trees that can partition 

the data using the most informative splits, regardless of the 

data type. 

Conclusion: Effectively handling heterogeneous data during 

imputation requires a flexible, adaptive approach that 

respects the specific characteristics of each data type. The 

chosen imputation method should be carefully matched to 

the data type—whether numerical, categorical, ordinal, or 

text—to minimize bias and maintain the accuracy of the 

dataset. By employing methods that account for the 

diversity and complexity of the data, practitioners can 

ensure that imputation not only fills in missing values but 

also preserves the integrity and relationships within the 

dataset, resulting in more reliable and robust analyses. 

 

3.1.2 Interdependent Variables  

In complex datasets, variables often exhibit intricate 

interdependencies, particularly in time-series and spatial 

data.  These interdependencies pose substantial challenges 

during imputation, as simplistic methods that ignore the 

relationships between variables can disrupt the data’s 

natural structure and distort downstream analyses. Imputing 

missing values without accounting for these 

interdependencies risks introducing significant biases, 

misrepresenting trends, and degrading the performance of 

predictive models. In time-series datasets, values at a given 

time point are frequently influenced by preceding 

observations, reflecting underlying temporal dynamics such 

as trends, seasonality, or autocorrelation. For instance, in 

economic or financial data, variables like stock prices or 

consumer spending often depend on prior values, making it 

critical to preserve this continuity during imputation. Using 

simple techniques such as mean imputation can sever these 

temporal relationships, resulting in artificially smoothed 

data that fails to capture important fluctuations or trends. 

More sophisticated approaches, like autoregressive 

imputation or incorporating lag variables, take the 

sequential nature of time-series data into account by using 

past observations as predictors for missing values. This 

ensures that imputed values align with the temporal 

structure of the dataset, thereby maintaining data integrity 

and improving model accuracy. Spatial datasets, which 

often contain locational dependencies, present similar 

challenges. In spatial data, observations at proximate 

locations are typically more correlated than those at distant 

ones, as seen in environmental datasets where variables like 

temperature or pollution levels exhibit spatial continuity. 

Simple imputation methods, such as global averages, 

overlook these spatial dependencies, potentially creating 

unrealistic or spatially inconsistent estimates. Spatial 

imputation techniques like Kriging or spatial autoregressive 

models address this by incorporating spatial correlation 

structures during imputation. These methods account for the 

relationships between neighboring points, ensuring that the 

imputed values are consistent with the geographical patterns 

in the data. This not only preserves spatial integrity but also 

enhances the accuracy and reliability of the analysis. 

Beyond time-series and spatial data, many other domains 

feature datasets with interdependent variables, such as 

multi-sensor data, medical time-series,and geospatial-

temporal datasets. In such cases, preserving the relationships 

between variables during imputation is crucial for 

maintaining the dataset’s coherence and ensuring that 

downstream models reflect the true underlying patterns. 

Ultimately, imputation methods that respect variable 

interdependencies—whether temporal, spatial, or even 

functional—are vital for producing accurate and reliable 

results. Without accounting for these complex relationships, 

imputation can introduce distortions that weaken model 

performance and compromise the validity of conclusions. 

Therefore, selecting imputation techniques that maintain 

interdependencies is essential in data-driven applications 

involving structured datasets, ensuring that the true nature of 

the data is preserved and faithfully reflected in analytical 

outcomes. 

 

3.2 Bias in Imputation 

3.2.1 Imbalance in Missing Data Patterns 

Imputation in imbalanced datasets presents significant 

challenges that distinctly affect the outcomes and reliability 

of classification and regression tasks. Imbalanced datasets, 

where some classes or outcomes are significantly 

underrepresented, can also lead to overfitting. In such cases, 

models might overfit to the majority class or the more 

frequently observed outcomes because there is insufficient 

data to learn about the minority classes or less common 

outcomes accurately Ali et al. (2019). This can skew the 

imputation results, making them biased towards the 

dominant data points. Understanding the unique dynamics 

of these tasks is crucial for implementing effective 

imputation strategies that maintain data integrity and model 

accuracy. These risks stem from the inherent skewness in 

the data distribution, which poses unique challenges for 

accurately estimating missing values. Techniques such as 

resampling the data, using anomaly detection methods to 

identify and adjust for rare events, or employing cost-

sensitive learning where the model pays more attention to 
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the minority class, are strategies that can help mitigate 

overfitting in these contexts. 

In classification tasks, methods like mean, median, or mode 

imputation introduce significant bias in imbalanced datasets, 

disproportionately influenced by the majority class. These 

methods often skew imputations, failing to adequately 

represent minority classes. For instance, in datasets with a 

90% prevalence of one class, mean imputation likely 

predicts this dominant class for missing values, exacerbating 

existing class imbalances and distorting classifier 

performance. This leads to decreased sensitivity and an 

increased rate of false negatives. Addressing this issue 

requires imputation techniques that account for class 

distribution or employing methods like multiple imputation, 

which captures data variability more effectively. Integrating 

class-aware imputation strategies, which consider 

underlying class proportions during imputation, can also 

help mitigate bias and improve predictive performance. 

Imputation is especially problematic in the context of 

minority classes. Techniques reliant on proximity or 

similarity, such as k-NN, struggle in sparse datasets where 

finding a sufficient number of similar cases within the 

minority class can be challenging Das et al. (2018). This 

often results in less reliable imputation, as the method may 

have to use proxies from the majority class to fill gaps, 

further diluting the characteristics of the minority class. The 

position and pattern of missing values significantly affect 

the risk associated with imputation in imbalanced datasets. 

Missing values more frequently occurring in the minority 

class can worsen the imbalance and increase bias. 

The position and pattern of missing values significantly 

impact the risk associated with imputation in imbalanced 

data. Missing values that occur more frequently in the 

minority class or certain ranges of the target variable can 

worsen the imbalance and increase bias. For example, if 

missing values are more common in the minority class, 

imputation methods may further reduce the representation of 

this class, making it even harder for the model to learn from 

it. Similarly, if missing values are concentrated in 

underrepresented ranges of the target variable, the 

imputation method may fail to capture the true data, leading 

to biased estimates. 

The risk of bias increases if missing values are not randomly 

distributed but are more frequent in certain classes or data 

segments. This pattern can influence the effectiveness of the 

imputation method, potentially exacerbating existing 

imbalances. It is crucial to ensure the chosen imputation 

method is suitable for the specific type of imbalance. For 

instance, methods that incorporate class weights or sample 

balancing techniques can help mitigate bias. Similarly, 

methods that model the entire distribution of the target 

variable, rather than relying on central tendencies, can 

provide more accurate imputations in regression tasks. 

 

 

Practical Recommendations 

1. To effectively address the imbalance before imputation, 

the Synthetic Minority Over-sampling Technique 

(SMOTE) is employed, which enhances dataset balance 

by generating synthetic samples Chawla et al. (2002). 

SMOTE interpolates between existing instances of the 

minority class to synthesize new samples. For each 

minority class instance, SMOTE selects one or more of 

its nearest neighbors and synthesizes new samples 

along the line segments joining the original instance 

and its neighbors. By augmenting the minority class 

with artificial yet plausible examples, SMOTE enriches 

the dataset’s diversity Fernandez´ et al. (2018). 

2. Applied prior to imputation, SMOTE ensures the 

process does not disproportionately favor the majority 

class, thus preserving the unique characteristics of the 

minority class and contributing to more accurate and 

unbiased modeling. By balancing the dataset, SMOTE 

not only improves the effectiveness of imputation but 

also enhances the reliability of classification tasks, 

where underrepresented classes might otherwise be 

marginalized, Shin et al. (2021). 

3. Regularization techniques such as L1 (lasso) and L2 

(ridge) play a crucial role in preventing overfitting in 

models dealing with imbalanced data. L1 regularization 

promotes sparsity in the model coefficients, beneficial 

when the dataset contains irrelevant or redundant 

features, while L2 regularization manages the 

magnitude of the coefficients, enhancing stability 

Vidaurre et al. (2013). 

4. The integration of ensemble methods like bagging, 

boosting, and stacking significantly bol-sters the 

robustness and accuracy of imputations in imbalanced 

datasets. These methods leverage the strengths of 

various models to improve overall prediction quality, 

reducing vari-ance (bagging), iteratively correcting 

errors (boosting), and optimizing predictions through a 

meta-learner (stacking) Liu and Zhou (2013). 

5. Monitoring the quality of imputation is crucial to 

identify biases and inaccuracies, especially in datasets 

where minority classes are underrepresented. 

Techniques such as histogram and density comparisons, 

statistical tests like the Kolmogorov-Smirnov, and 

performance metrics including confusion matrices, 

precision, recall, and F1-scores, are instrumental in 

assessing the effectiveness of the imputation Gaudreault 

et al. (2021). Cross-validation and sensitivity analyses 

provide additional validation, uncovering any 

instabilities or inconsistencies that may arise during the 

imputation process. 

 

3.2.2 High Dimensionality 

Imputing missing values in high-dimensional datasets 

presents significant challenges, primarily due to the risks of 

overfitting and the increased computational demands. High-
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dimensional datasets, characterized by having a large 

number of features relative to the number of observations, 

necessitate meticulous approaches to ensure precise and 

efficient imputation processes. In such cases, the abundance 

of features compared to the number of samples provides the 

imputation model with excessive flexibility, leading to a 

model that can capture noise as well as the underlying 

signal. This risk is especially pronounced with sophisticated 

ML-based imputation methods like k-NN, random forests, 

GMM, autoencoders, and GANs, which are prone to 

overfitting unless properly regularized or tuned. 

Overfitting Risks in High-Dimensional Contexts One of the 

primary concerns in high-dimensional settings is the ’curse 

of dimensionality’, which exacerbates overfitting risks Fan 

and Li (2006). As the number of features increases, the 

distance between data points grows, diluting the meaning of 

”proximity” or ”similarity” that is crucial for methods like 

k-NN. This phenomenon complicates the task of identifying 

meaningful patterns, reducing the efficacy of distance-

dependent imputation methods. The ’curse of 

dimensionality’ further exacerbates overfitting risks. This 

phenomenon complicates the task of identifying meaningful 

patterns, reducing the efficacy of imputation methods reliant 

on distance metrics Fan and Li (2006). Similarly, random 

forest imputation might develop overly complex trees that 

are overly specific to the training data, capturing spurious 

correlations that do not represent true data. 

Computational Challenges: Beyond the risk of overfitting, 

high-dimensional datasets impose significant computational 

challenges. The complexity of imputation methods escalates 

with the increase in the number of features, leading to 

prolonged processing times and escalated memory demands. 

For instance, the computational cost of k-NN imputation 

expands as it involves computing distances between each 

data point, increasing with both the number of features and 

observations. Similarly, random forest imputation, which 

constructs multiple decision trees, experiences a heightened 

computational load as the feature count rises. MICE, which 

iteratively models each feature with missing values based on 

other features, becomes increasingly resource-intensive with 

more features. This iterative nature significantly amplifies 

the computational burden, making it less feasible for 

extremely high-dimensional datasets without substantial 

computational resources. GMM, which models the data as a 

mixture of Gaussians, faces increased complexity with 

additional features, necessitating the estimation of more 

parameters and lengthening convergence times. 

Practical Recommendations Handling missing values in 

high-dimensional datasets requires careful consideration of 

the overfitting risks and computational constraints. Effective 

imputation demands selecting appropriate methods that 

balance complexity with the ability to generalize well to 

new data, alongside managing the substantial computational 

resources needed for high-dimensional data processing. 

 

1. Dimensionality Reduction Methods: Dimensionality 

reduction techniques such as Princi-pal Component 

Analysis (PCA) and t-Distributed Stochastic 

Neighbor Embedding (t-SNE) are crucial for 

managing high-dimensional data, Hasan and 

Abdulazeez (2021). PCA reduces dimensions by 

projecting data onto principal components that 

capture the most variance, simplifying the structure 

and reducing the number of dimensions Wold et al. 

(1987). This reduction allows for more accurate 

imputation in a lower-dimensional space, which can 

then be transformed back to the original space. t-

SNE, on the other hand, focuses on preserving the 

local structure of data while mapping it to a lower-

dimensional space Cieslak et al. (2020). t-SNE is 

useful for visualizing high-dimensional data and can 

aid in understanding complex patterns before 

performing imputation Van der Maaten and Hinton 

(2008). 

2. Sparse Imputation Methods: Sparse imputation 

methods like Singular Value Decompo-sition (SVD) 

and Lasso regression effectively handle high-

dimensional data by focusing on the most significant 

components or enforcing sparsity in model 

coefficients Tay et al. (2021). SVD decomposes the 

high-dimensional data matrix into simpler matrices, 

facilitating imputation in a lower-dimensional space 

while retaining essential data characteristics Kalman 

(1996). Lasso regression applies L1 regularization, 

which shrinks less important coefficients to zero, 

simplifying the model and improving imputation 

accuracy by reducing the influence of irrelevant or 

redundant features Vidaurre et al. (2013). 

3. Cluster-Based Imputation: Clustering methods such 

as K-means and GMM segment the data into clusters 

based on similarity, making imputation more 

manageable. In K-means clustering, the data is 

partitioned into k clusters, with each data point 

assigned to the cluster with the nearest mean Zalik 

(2008); Wani (2024). Imputation within each cluster 

is more accurate as similar data points are likely to 

have similar missing values Zhang et al. (2008). 

GMMs use a probabilistic approach, assuming the 

data is generated from a mixture of Gaussian 

distributions; each component represents a cluster, 

and imputation is performed based on the parameters 

(mean and covariance) of these distributions, offering 

a robust method for dealing with high-dimensional 

imputation tasks Yu et al. (2015). 

 

In summary, addressing the challenges of high 

dimensionality in missing data imputation involves a careful 

balance of methodological rigor and computational strategy. 

By leveraging the above methods, and by being cognizant of 

the inherent limitations of various imputation methods, 
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researchers can achieve more accurate and reliable 

imputations. This careful approach ensures that the resultant 

data analyses are both robust and insightful, leading to more 

informed conclusions and interpretations. 

 

3.3 Evaluation and Validation 

In real-world datasets, the absence of ground truth for 

missing values presents a significant challenge in evaluating 

imputation quality. Without access to the true values, it 

becomes difficult to directly assess how accurately the 

imputation method has filled in the gaps. Standard metrics, 

like Root Mean Squared Error (RMSE), often fall short 

because they focus on pointwise error between imputed and 

actual values when true values are available. However, in 

many cases, the goal of imputation is not just to minimize 

error but to preserve the underlying data relationships and 

improve the performance of downstream tasks, such as 

classification, regression, or clustering Sofi and Wani 

(2021). To overcome this limitation, alternative evaluation 

strategies must be adopted. One common approach is to 

artificially introduce missing values in a dataset where the 

ground truth is known, allowing for the calculation of 

metrics like RMSE on the artificially incomplete data. 

While this provides insight into performance, it may not 

fully capture the method’s ability to maintain complex 

variable relationships or task-specific accuracy in a real-

world scenario. 

Another approach involves evaluating the impact of 

imputation on downstream tasks. For example, the 

performance of a machine learning model (e.g., 

classification accuracy, R-squared in regression) trained on 

the imputed data can serve as an indirect measure of 

imputation quality. If the model performs well despite 

missing data, it suggests that the imputation method has 

effectively preserved the important relationships between 

variables. Additionally, metrics that assess the structure of 

the data, such as cluster integrity (e.g., Silhouette Score) or 

temporal pattern consistency (e.g., Dynamic Time 

Warping), can provide further validation when ground truth 

is unavailable. Ultimately, in the absence of ground truth, 

the effectiveness of imputation should be judged by how 

well it supports the dataset’s intended analytical purpose, 

emphasizing the need for task-specific evaluation metrics 

rather than solely relying on pointwise error metrics. 

 

3.4 Adaptability to Dynamic Data 

In real-time and streaming data environments, data 

distributions are not static but evolve over time, a 

phenomenon known as concept drift.  Concept drift occurs 

when the statistical properties of the input features or target 

variables shift, making static imputation methods 

inadequate. These traditional imputation techniques often 

assume that relationships within the data remain constant. 

However, in dynamic environments such as financial 

markets, sensor networks, or real-time health monitoring, 

these assumptions quickly become outdated, leading to poor 

imputation and degraded model performance. 

The challenge lies in how static imputation methods, which 

rely on fixed patterns from historical data, struggle to keep 

pace with changing trends. For instance, imputing missing 

values in a time series of sensor data based on outdated 

information may miss critical new patterns or anomalies, 

compromising decision-making. As a result, the inability to 

adapt to dynamic changes can significantly impair 

downstream machine learning models, reducing their 

predictive accuracy and reliability. To effectively handle 

concept drift, online learning algorithms provide a solution 

by continuously updating imputation models as new data 

arrives. These algorithms adjust their internal parameters 

incrementally, enabling them to adapt in real time. For 

example, online versions of k-Nearest Neighbors (k-NN), 

Support Vector Machines (SVMs), and Gaussian Mixture 

Models (GMMs) can dynamically adjust to shifts in data 

patterns, ensuring that imputed values reflect the latest 

trends rather than outdated correlations. 

Sliding windows offer another method of handling dynamic 

data. By focusing on the most recent observations within a 

defined window and discarding older data, sliding windows 

ensure that the imputation is aligned with the latest patterns 

in the dataset. This approach is particularly effective in 

scenarios where older data becomes irrelevant due to 

significant concept drift, as seen in rapidly changing fields 

like financial forecasting or online user behavior analysis. 

Furthermore, can be adapted to address concept drift in real-

time settings. By combining predictions from multiple 

models, ensembles can effectively balance historical data 

with current trends. For example, an ensemble of models 

trained on different subsets of the data or at different times 

can produce more robust imputations, accounting for both 

long-term patterns and short-term shifts in the data. In 

summary, real-time imputation in dynamic environments 

requires methods that can quickly adapt to changing data 

distributions. Online learning algorithms, sliding windows, 

and dynamic ensemble methods are crucial strategies for 

maintaining imputation accuracy and ensuring the ongoing 

reliability of machine learning models. These adaptive 

techniques enable systems to keep pace with concept drift, 

preserving the integrity of predictions and decisions in ever-

evolving data landscapes.  

 

IV. SOLUTIONS 

4.1 Domain-Specific Imputation Methods 

Imputation methods should be customized to fit the specific 

characteristics of the data, ensuring both accuracy and the 

preservation of intrinsic data patterns.  For datasets 

containing mixed data types numerical and categorical, 

decision-tree-based methods like Random Forest imputation 

are particularly effective. These techniques excel at 

modeling complex, non-linear relationships between 
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variables by splitting the data into subgroups based on 

similarity, allowing them to handle different types of data 

simultaneously. This makes Random Forest imputation 

ideal for datasets where traditional methods might struggle 

to account for variable interactions across mixed data types. 

In time-series data, where preserving temporal continuity is 

crucial, domain-specific methods such as Kalman filters and 

autoregressive models are more appropriate. Kalman filters 

work by estimating missing values through a recursive 

process that smooths noise and tracks underlying system 

dynamics over time. This makes them highly effective for 

applications involving time-varying processes. 

Autoregressive models, meanwhile, predict missing values 

based on the linear dependence of current data points on 

prior observations, capturing trends and seasonal patterns 

that are common in time-series data. Both methods are 

designed to preserve the sequential nature of time-series 

data, ensuring that temporal dependencies and fluctuations 

are accurately represented. By aligning imputation methods 

with the specific characteristics of the data—whether 

through decision-tree-based approaches for mixed data or 

time-series techniques that account for temporal 

relationships—domain-specific imputation minimizes bias, 

reduces error, and ensures the integrity of the imputed 

dataset. 

 

4.1.1 Feature Engineering for Dependencies 

Feature engineering plays a vital role in preserving the 

relationships between interdependent variables during 

imputation. This is particularly important in datasets where 

variables are not independent, such as in time-series or 

spatial data, where imputation methods need to account for 

inherent dependencies to avoid distorting the underlying 

patterns. In time-series datasets, one common technique is 

the creation of lag variables. Lag variables are created by 

shifting the time-series data by one or more time steps, 

allowing the imputation method to use past or future values 

as predictors for missing data. This approach helps to 

preserve the temporal relationships within the dataset.  

In imputation, these lag variables are incorporated into the 

model, ensuring that the missing values are filled in a way 

that maintains the temporal structure of the data. In spatial 

data, similar principles apply, but the focus shifts to 

capturing spatial dependencies. Spatial imputation methods, 

such as Kriging or spatial autoregressive models, leverage 

the spatial relationships between observations. These 

methods use the values of neighboring observations to 

predict missing data, based on the assumption that spatially 

close points tend to exhibit similar characteristics. For 

example, Kriging models the spatial correlation using a 

variogram function, which quantifies the spatial dependency 

between observations based on their geographic distance.  

These feature engineering techniques ensure that the 

interdependencies between variables are preserved during 

imputation, leading to more accurate and contextually 

consistent results. In datasets with strong temporal or spatial 

dependencies, such engineered features can significantly 

improve the quality of imputation by aligning it with the 

natural relationships in the data. Moreover, these techniques 

provide a robust framework for handling missing data in 

complex, structured datasets, making them invaluable in 

fields such as economics, geostatistics, environmental 

science, and any domain that relies on structured time-series 

or spatial observations. 

 

4.2 Reducing Bias in Imputation 

4.2.1 Class-Aware Imputation 

Class-aware imputation techniques, such as stratified 

imputation, aim to preserve class distributions while 

handling missing data, making them particularly valuable 

for imbalanced datasets. These methods ensure that missing 

values are imputed separately within each class, preventing 

the over-representation of majority classes in the imputed 

data. By stratifying imputation by class, the inherent 

distribution of both minority and majority classes is 

maintained, reducing biases that could distort subsequent 

analysis or model performance. This is especially important 

in classification tasks where accurate representation of all 

classes, particularly the minority classes, is crucial for 

model fairness and effectiveness. Class-aware imputation 

methods help mitigate the risk of the majority class 

dominating the imputation process, which could otherwise 

lead to skewed predictions and unfair performance 

evaluations, particularly in highly imbalanced datasets. 

 

4.3 Addressing Computational Constraints 

4.3.1 Approximate and Efficient Methods 

To address computational constraints, approximate 

imputation methods provide a balance between accuracy 

and computational efficiency. These techniques are 

designed to reduce resource consumption, particularly in 

environments with limited processing power or memory. 

Two prominent approaches are mini-batch processing and 

low-rank matrix factorization, such as Singular Value 

Decomposition (SVD). Mini-batch Processing: Mini-batch 

processing tackles the imputation problem by dividing large 

datasets into smaller, manageable subsets (mini-batches). 

Instead of processing the entire dataset in a single pass, the 

imputation algorithm iterates over mini-batches, updating 

imputed values incrementally. The size of the mini-batches 

is a critical factor; smaller batches reduce memory usage but 

may lead to noisier estimates, while larger batches improve 

accuracy but require more memory.  

This method reduces the computational complexity from 

O(n) to O(m) per iteration, where n is the size of the dataset 

and m is the size of the mini-batch (with m ≪ n). Low-Rank 

Matrix Factorization (SVD): Low-rank matrix factorization 

techniques, such as SVD, aim to approximate the original 

data matrix by decomposing it into lower-dimensional 
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components. This technique assumes that the missing values 

can be imputed by capturing the underlying low-

dimensional structure of the data. The SVD decomposes the 

data matrix X into three matrices: The computational 

complexity of SVD is O(n2k), which is significantly less 

than full matrix imputation methods when k is small 

compared to the matrix dimensions. While SVD offers 

computational savings, it is particularly effective when the 

data exhibits low-rank properties, which allows for 

reasonable approximations with minimal loss in imputation 

accuracy. 

Trade-offs: Both mini-batch processing and low-rank matrix 

factorization present trade-offs between accuracy and 

computational efficiency. Mini-batch processing accelerates 

computation but may result in slightly noisier imputations 

due to reduced data exposure in each iteration. Low-rank 

matrix factorization simplifies data by assuming an 

underlying low-dimensional structure, which works well in 

many real- world datasets but may not capture more 

complex patterns or interactions in high-rank datasets. By 

utilizing these approximate methods, it is possible to impute 

large-scale datasets more efficiently, making them well-

suited for environments with limited computational 

resources, such as edge devices, embedded systems, or 

cloud infrastructure with cost constraints. 

 

4.4 Improved Evaluation and Validation Techniques 

4.4.1 Task-Specific Evaluation Metrics 

Evaluating imputation methods requires more than simply 

calculating general metrics like Root Mean Squared Error 

(RMSE), as these often fail to reflect how well imputation 

preserves critical relationships in the data. Instead, task-

specific metrics provide a clearer picture of imputation 

quality, helping researchers better assess how imputations 

impact downstream tasks. In classification tasks, metrics 

such as the F1-score and Area Under the Receiver Operating 

Char- acteristic Curve (AUC) are more appropriate than 

simple accuracy, especially for imbalanced datasets. For 

example, in a medical dataset with a rare disease class, the 

F1-score helps ensure that the imputation doesn’t 

compromise the model’s ability to correctly identify this 

minority class, while AUC provides a comprehensive 

measure of how well the imputed data supports 

distinguishing between classes across varying thresholds. 

For multi-class classification, macro-averaged and micro-

averaged F1-scores offer complementary perspectives. In a 

plant species classification dataset, macro-averaged scores 

ensure that rare species are considered equally, while micro-

averaged scores reflect overall classification performance, 

weighted by class size. In regression tasks, metrics like 

Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE) are often better suited than 

RMSE. For instance, in a financial forecasting model, MAE 

directly measures the average difference between imputed 

and actual values, giving a clear sense of how imputation 

affects predictions. MAPE is particularly valuable when 

relative accuracy matters, such as when imputing missing 

sales figures for a product line. In clustering tasks, 

imputation can affect the coherence of clusters.  For 

example, in customer segmentation, the Silhouette Score 

measures how well imputed data maintains the distinction 

between clusters, while the Davies-Bouldin Index quantifies 

intra-cluster similarity versus inter-cluster separation, 

ensuring the imputation process doesn’t blur important 

groupings. For time-series tasks, preserving temporal 

patterns during imputation is critical. Dynamic Time 

Warping (DTW) distance measures how well imputation 

captures temporal dynamics, which is particularly important 

in applications like energy consumption forecasting, where 

shifts in time must be aligned. 

Symmetric Mean Absolute Percentage Error (SMAPE) 

further refines this by mitigating the effects of extreme 

values, offering a more robust assessment for volatile time-

series data. In anomaly detection, precision-focused metrics 

are vital. For instance, in fraud detection, Precision at K 

measures the ability to correctly identify the top suspected 

fraud cases, while the Precision-Recall AUC ensures that 

imputation doesn’t inflate false positives or obscure rare but 

critical events. Using task-specific metrics allows for a 

targeted evaluation of how imputation methods impact 

downstream tasks, ensuring that they support the specific 

goals of the analysis rather than just minimizing error. 

 

4.4.2 Sensitivity and Robustness Testings 

To ensure that imputation methods are reliable and don’t 

introduce bias or inconsistencies into downstream models, 

sensitivity and robustness testing are essential. This involves 

testing how different imputation strategies affect model 

outcomes under various scenarios, providing insights into 

their stability and effectiveness. Monte Carlo simulations 

are a common method for sensitivity testing. In practice, this 

involves generating multiple imputed datasets under varying 

parameters or assumptions.  For instance, in a healthcare 

dataset, multiple versions of the dataset can be created with 

different imputation techniques (e.g., mean imputation, k-

nearest neighbors) or with different settings for the same 

method.  These datasets are then used to train models, and 

their performance is compared. By analyzing the variance in 

performance metrics, such as classification accuracy or 

mean error, researchers can assess how sensitive the 

downstream models are to changes in the imputation 

process.  Low variance indicates that the imputation method 

is robust, while high variance suggests instability. A more 

concrete step-by-step approach to Monte Carlo testing 

includes: 1. Generate N imputed datasets by applying 

different imputation methods or varying hyperparameters. 2. 

Train models on each imputed dataset using a consistent 

modeling approach. 3. Evaluate performance across all 

imputed datasets using relevant metrics (e.g., F1-score, 

MAE, AUC). 4. Analyze variance in the results to assess 
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imputation robustness, noting how sensitive model 

performance is to changes in the imputation method. 

Additionally, perturbation analysis introduces small, 

controlled variations in the imputation process to observe 

their effects on outcomes. For example, by slightly altering 

input data (e.g., shifting a few key variables) before and 

after imputation, researchers can evaluate whether the 

imputation method handles minor fluctuations robustly. 

This approach helps identify methods that may be overly 

sensitive to noise or small variations in the data, further 

refining the choice of an appropriate imputation technique. 

Together, these sensitivity and robustness tests provide a 

robust empirical foundation for selecting imputation 

methods. They ensure that the chosen imputation technique 

not only fills in missing data but also supports reliable and 

consistent results across different scenarios, making the 

analysis more generalizable and trustworthy. 

 

V. CONCLUSION 

In this paper, we explored the various challenges associated 

with missing data imputation and proposed solutions to 

address these issues. By applying domain-specific 

imputation methods, reducing bias, scaling computational 

techniques, and using appropriate evaluation metrics, we 

can improve the quality and applicability of imputed data in 

real-world scenarios. 
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